
Formal Analysis of GPU Programs
with Atomics via

Conflict-Directed Delay-Bounding

Joint work with Zvonimir Rakamarić, Ganesh Gopalakrishnan, and
Guodong Li

Wei-Fan Chiang

1

Motivation

• Use of GPUs growing!

– Extreme-Scale Computing, Mobile Devices,…

– High Compute Rates, Parallelism

• This work : how to design correct GPU programs?

2

3

CPU program

void inc_cpu(float* a,
 float b, int N) {
 for (int idx = 0; idx<N; idx++)
 a[idx] = a[idx] + b; }

void main() {

 increment_cpu(a, b, N); }

CUDA program

__global__ void inc_gpu(float* A, float b, int N) {
 int tid = blockIdx.x* blockDim.x+ threadIdx.x;
 if (tid < N)
 A[tid] = A[tid] + b;
}

voidmain() {
 …..
 dim3dimBlock (blocksize);
 dim3dimGrid(ceil(N / (float)blocksize));
 increment_gpu<<<dimGrid, dimBlock>>>(a, b,
N);
}

Example: Increment Array Elements

Contrast between CPUs and GPUs
Fine-grained threads
scheduled to run like this:
tid = 0, 1, 2, 3, …

3

GPU Computation Model

T T T ….

Shared
Memory

Block 0

T T T ….

Shared
Memory

Block n-1

……..

Global Memory

Grid

Shared

Shared

4

Why is GPU Programming
Error-Prone?

• Multi-threaded and shared memory

• Thread synchronization.

– Barrier

– Atomic operations

• Safety properties:

– Races

– Assertions Our focus!

5

Why is GPU Programming
Error-Prone?

• Multi-threaded and shared memory

• Thread synchronization.

– Barrier

– Atomic operations

• Safety properties:

– Races

– Assertions Our focus!

6

T0 T1 T2

Barrier

Why is GPU Programming
Error-Prone?

• Multi-threaded and shared memory

• Thread synchronization.

– Barrier

– Atomic operations

• Safety properties:

– Races

– Assertions Our focus!

7

T0 T1 T2
Barrier

Why is GPU Programming
Error-Prone?

• Multi-threaded and shared memory

• Thread synchronization.

– Barrier

– Atomic operations

• Safety properties:

– Races

– Assertions Our focus!

8

atomic op.
read v sh[i]
write sh[i] v

Why is GPU Programming
Error-Prone?

• Multi-threaded and shared memory

• Thread synchronization.

– Barrier

– Atomic operations

• Safety properties:

– Races

– Assertions Our focus!

9

atomic op.
read v sh[i]
write sh[i] v

preemption

Schedules Are Equivalent in
Race-free programs (“DRF theorems”)

Block 0
T 0 T 1 T 2

Barr 0

Barr 1

Block 1
T 0 T 1 T 2

Barr 2

Barr 4

10

Schedules Are Equivalent in
Race-free programs (“DRF theorems”)

Block 0
T 0 T 1 T 2

Barr 0

Barr 1

Block 1
T 0 T 1 T 2

Barr 2

Barr 3

11

Schedules Are Equivalent in
Race-free programs (“DRF theorems”)

Block 0
T 0 T 1 T 2

Barr 0

Barr 1

Block 1
T 0 T 1 T 2

Barr 2

Barr 3

12

Sequential Scheduling [Attiya, 1994]

Race Detection by Single Schedule

Block 0
T 0 T 1 T 2

Barr 0

Barr 1

Block 1
T 0 T 1 T 2

Barr 2

Barr 3

13

Explore ONE schedule is sufficient to detect races if there is any.
 [Adve, 1991] [Li, PPOPP’12]

Race Pruning by Introducing Barriers

Block 0
T 0 T 1 T 2

Barr 0

Barr 2

Block 1
T 0 T 1 T 2

Barr 3

Barr 5

14

Barr 1 Barr 4

Barriers don’t prevent Inter-block Race

Block 0
T 0 T 1 T 2

Barr 0

Barr 1

Barr 2

Block 1
T 0 T 1 T 2

Barr 3

Barr 4

Barr 5

X X

Y Y

Race

Race

15

Needs of Critical Sections

Block 0
T 0 T 1 T 2

Barr 0

Barr 1

Barr 2

Block 1
T 0 T 1 T 2

Barr 3

Barr 4

Barr 5

CSX CSX

CSY CSY

lck(x) lck(x)

ulk(x) ulk(x)

lck(y) lck(y)

ulk(y) ulk(y)

Conflict

Conflict

16

Atomics Based Synchronization Example

v = tree[index];
if (v ≠ LOCK) then
 if (v == atomicCAS(&tree[index], v, LOCK)) then
 assert(v ≠ LOCK);

 tree[index] = w; // w ≠ LOCK

Thread X

Critical Section

CSX
lck(x)

ulk(x)

[Burtscher, 2011]

17

Atomics Based Synchronization Example

v = tree[index];
if (v ≠ LOCK) then
 if (v == atomicCAS(&tree[index], v, LOCK)) then
 assert(v ≠ LOCK);

 tree[index] = w; // w ≠ LOCK

Thread X

Critical Section

CSX
lck(x)

ulk(x)

[Burtscher, 2011]

18

target expected new

Number of Conflicts Could be Many!!

Block 0
T 0 T 1 T 2

Barr 0

Barr 1

Barr 2

Block 1
T 0 T 1 T 2

Barr 3

Barr 4

Barr 5

CSX CSX

CSY CSY

lck(x) lck(x)

ulk(x) ulk(x)

lck(y) lck(y)

ulk(y) ulk(y)

19

CSX
ulk(x)

lck(x)

CSY
ulk(y)

lck(y)

CSY

lck(y)

ulk(y)

CSX
ulk(x)

lck(x)

CSX

lck(x)

ulk(x)
CSX

lck(x)

ulk(x)

CSY

lck(y)

ulk(y)
CSY

lck(y)

ulk(y)

Schedules are not equivalent!!

Schedule Exploration is Needed!

• Previous work

– Barrier based synchronization

• Explore one schedule.

• Our work

– Barrier+atomic based synchronization

• Atomic operations introduce conflicts

• Explore multiple schedules.

• Need a good scheduling strategy.

20

Our Contributions

• Conflict-directed Delay-bounding (CD)
scheduling strategy.

– Checks safety properties with synchronizations
using barriers+atomic.

• Operational semantics of CD scheduling.

21

Without a good search strategy 

Intuitions of CD Scheduling

Block 0
T 0 T 1 T 2

Barr 0

Barr 1

Barr 2

Block 1
T 0 T 1 T 2

Barr 3

Barr 4

Barr 5

X1 X2

Y1 Y2

By some schedule, we visit X1  X2 and Y1  Y2.

22

Intuitions of CD Scheduling

Block 0
T 0 T 1 T 2

Barr 0

Barr 1

Barr 2

Block 1
T 0 T 1 T 2

Barr 3

Barr 4

Barr 5

X1 X2

Y1 Y2

23

Find another schedule that we visit X2  X1 and Y2  Y1.

Background: Sequential Scheduling

Block 0
T 0 T 1 T 2

Barr 0

Barr 1

Barr 2

Block 1
T 0 T 1 T 2

Barr 3

Barr 4

Barr 5

Two Conflicts: X1  X2 and Y1  Y2.

24

X1 X2

Y1 Y2

CD Scheduling

Block 0
T 0 T 1 T 2

Barr 0

Barr 1

Barr 2

Block 1
T 0 T 1 T 2

Barr 3

Barr 4

Barr 5

CD Schedule: X2  X1 and Y2  Y1.

25

X1 X2

Y1 Y2

Delay

Delay

High-Level View of CD Scheduling

Sequential
Schedules

N-delay
Schedule

GKLEE:
Conflict Detector &

CUDA Simulator

N+1-delay
Schedules

N+1 ≤ K

Bug

Discard
Yes No

Schedule
Generator

Conflict
Prioritizer

0-delay
Schedule

Conflicts

26

0-delay Schedule: D = []
Block 0

T 0 T 1 T 2
Barr 0

Barr 1

Barr 2

Block 1
T 0 T 1 T 2

Barr 3

Barr 4

Barr 5

Two Conflicts: X1  X2 and Y1  Y2.

27

X1 X2

Y1 Y2

1-delay Schedule: D = [X1]
Block 0

T 0 T 1 T 2
Barr 0

Barr 1

Barr 2

Block 1
T 0 T 1 T 2

Barr 3

Barr 4

Barr 5

A conflict is detected after D = []: Y1  Y2.

D = []

28

X1 X2

Y1 Y2

2-delay Schedule: D = [X1, Y1]
Block 0

T 0 T 1 T 2
Barr 0

Barr 1

Barr 2

Block 1
T 0 T 1 T 2

Barr 3

Barr 4

Barr 5

D = [Y1]

D = []

29

X1 X2

Y1 Y2

1-delay Schedule: D = [Y1]
Block 0

T 0 T 1 T 2
Barr 0

Barr 1

Barr 2

Block 1
T 0 T 1 T 2

Barr 3

Barr 4

Barr 5

No conflict is detected after D = []

D = []

30

X1 X2

Y1 Y2

Operational Semantics of CD

• Opsem of Scheduling given in our paper

– Different scheduling options (e.g. which thread to
run next) captured using uninterpreted functions

• Limitation of current CD approach:

– Does not address unfair CUDA runtimes
[Habermeir, Knapp, ESOP’13]

– Will be addressed in our future work

31

Example: Buggy N-body Simulation

• We planted the following bug in N-body code
[Burtscher, GCG’11]

1. v = tree[index];
(a long section of code here…)

2. if (v ≠ LOCK) then

3. v = tree[index];

4. if (v == atomicCAS(&tree[index], v, LOCK)) then

5. assert(v ≠ LOCK);

6. tree[index] = w; // w ≠ LOCK
32

Critical Section

Example: Buggy N-body Simulation

1. v = tree[i];
2. if (v ≠ LOCK)
3. v = tree[index];
4. if (v == CAS(…))
5. assert(v ≠ LOCK);

6. tree[index] = w;

T0 T1

Line 2: v = 0

Line 3: v = LOCK

Line 4:
v = tree[i] = LOCK

Line 5:
assert(v ≠ LOCK)

Line 5:
(tree[i] == LOCK)

FAIL!

33

CS

Experiments: Bug-Free Benchmarks

Benchmark LOC
No Heuristic Heuristic

schedules result # schedules result

aMin 20 431 Verified 431 Verified

aMinUpdate 35 653 Verified 294 Verified

bintree 75 835 Verified 405 Verified

TSP 130 114 Verified 60 Verified

N-body 260 1195 Verified 336 Verified

• Heuristic: pick “conditional atomic operation” conflicts (atomicCAS)
• Errors are detected using user-provided assertions
• 3 blocks and 1 thread per block, delay-bound is 2
• Running times ranging from 5 to 5000 seconds

34

Experiments: Buggy Benchmarks

Benchmark
No Heuristic Heuristic

schedules result # schedules result

aMin 107 Bug caught 107 Bug caught

aMinUpdate 6 Bug caught 4 Bug caught

bintree 14 Bug caught 202 Omission

TSP 4 Bug caught 4 Bug caught

N-body 448 Bug caught 126 Bug caught

35

Related Work

• Exploring Seq. Schedules under Race-Freedom
– General Concurrency Arena:

• Adve and Hill, ’91

• “DRF theorems” in Java Memory Model studies

– GPU Arena:
• Li and Gopalakrishnan, FSE’09

– Tool : “PUG”

• Li, Li, Gopalakrishnan, Rajan, Ghosh, PPoPP’12
– Tool : “GKLEE”

• Betts, Chong, Donaldson, Qadeer, and Thomson, SPLASH’12
– Tool : “GPUVerify”

36

Related Work
• Scheduling Methods:

– DPOR

• Flanagan and Godefroid, POPL’05
(http://users.soe.ucsc.edu/~cormac/)

– Sequentialization

• Lal and Reps, CAV’08

• Torre, Madhusudan, Parlato, CAV’09

• Nagafi, Hu, Rakamaric’, SPIN’10

– Delay Bounding: Emmi, Qadeer, Rakamaric’, POPL’11

• This work in comparison with above scheduling methods:

– Specializes bounding strategy to exploit warp-level sequential
scheduling (GKLEE, PPoPP’12)

– exploits conflicts (Sen, PLDI’08) to schedule around CUDA Atomics

37

http://users.soe.ucsc.edu/~cormac/

Summary

• Introduced Conflict-directed Delay-bounded
(CD) scheduling search strategy for handling
atomics

• Implemented in GKLEE

– Finds bugs in realistic benchmarks

• Heuristic for picking relevant conflicts

– Works well in practice

38

Future Work

• Extend CD scheduling to other contexts

– Hybrid programming

– Recursive calls in GPU kernels

• Address CUDA unfair runtimes

• Include other scheduling strategies such as
exploiting thread symmetry

39

Thanks.

Question?

40

The following slides are
backup slides.

41

Motivation

42

Hybrid Concurrent
Programs

Shared
Memory

Message
Passing

CPU GPU

Sync. by
Barriers

Sync. by Barriers
+ atomic

GPU Computation Model

Thread
0 ….

Thread
1

Thread
n-1

Block i

Shared Memory

Thread
w-1 …

Warp 0

SIMD Lock-step Execution

43

GPU Computation Model

Thread
0 ….

Thread
1

Thread
n-1

Block i

Shared Memory

Thread
w-1 …

Warp 0

We currently consider warp size is 1.

44

About Handling Warps

• Our current opsem is based on warp size = 1

• GPU (CUDA) programmers should not assume that
warp size is fixed to a certain number

• Thus, assuming warp size = 1 in testing is a heuristic
for identifying most races/bugs

• By incorporating the predicated form of CUDA
semantics proposed in GPUVerify [Donaldson,
2012], our opsem could also handle warps

45

Operational Semantics of CD

• Blocks and Threads are organized as a queue of
queues

• Ia, Ib,… are instructions. “T0: Ia” denotes that T0’s
current instruction is la

• hd(D) is the delay set of the current schedule,
which is a queue of instructions

Block 0

T0: la T1: lb T2: lc

Block 1

T0: lp T1: lq T2: lr

hd(D)

lx ly
 Queue Head Queue Tail 

46

Operational Semantics of CD

• The 1st thread of the 1st block in the queue is
always first considered for scheduling

• Check if Ia is equal to Ix

Block 0

T0: la T1: lb T2: lc

Block 1

T0: lp T1: lq T2: lr

 Queue Head Queue Tail  lx ly

hd(D)

47

Operational Semantics of CD

• Precondition: la = lx

– Delay the execution of Ia

• Each instruction in hd(D) is only delayed once

Block 0

T1: lb T2: lc T0: la

Block 1

T0: lp T1: lq T2: lr

 Queue Head Queue Tail  ly

hd(D)

48

Operational Semantics of CD

• Precondition: la ≠ lx and current instructions of
all threads in the queue head are barriers, i.e.,
Ia = Ib = Ic= barrier

– Schedule all threads in the queue head block

Block 0

T0: la T1: lb T2: lc

Block 1

T0: lp T1: lq T2: lr

 Queue Head Queue Tail  lx ly

hd(D)

49

Operational Semantics of CD

• Precondition: la ≠ lx and there is a thread in the
queue head whose current instruction is not a
barrier
– If Ia is not a barrier, execute it

– Otherwise, the 1st thread of the 1st block (T0) yields

Block 0 Block 1

T0: lp T1: lq T2: lr

 Queue Head Queue Tail  lx ly

hd(D)

T1: lb T2: lc T0: la

50

Related Work:
Other GPU Operational Semantics

• Modeling warp execution and divergence.

– Predicated execution model [Alastair and Qadeer,
2013].

• A GPU verification tool, GPUVerify, is based on this
semantics.

– Stack-based execution model [Habermaier and
Knapp, 2013].

• Our operational semantics models sequential
GPU simulation and scheduling strategies.

51

Comparison between CD Scheduling
and Other Strategies

• Vs. Dynamic Partial Order Reduction [Flanagan
and Godefroid, 2005]
– CD scheduling priorities schedule explorations

with detected conflicts.

• Vs. Race-directed [Sen, 2008]
– CD scheduling bounds the # of contexts.

• Vs. Context-bounded [Qadeer, 2005]
– CD scheduling decides preemption locations with

detected conflicts.

52

